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Introduction

An important problem in finite difference or finite element
computation of the electromagnetic field obeying the space-time
Maxwell equations with self-consistent sources is that of
truncating the outer numerical boundaries properly to avoid
spurious numerical reflection. Methods for extrapolating properly
the fields just beyond a numerical boundary in free space have
been treated by a number of workers, Lindmanl considered
reflection of both propagating and evanescent plane waves at
various angles of incidence to a boundary. He used projection
operators which process past data at the boundar¥ to update three
to six wave equations there. Engquist and Majda< developed a
systematic method for “"manipulating symbols" to obtain a hierarchy
of local boundary conditions at the artificial (truncating)
boundaries. They considered 2-dimensional waves impinging on
plane boundaries from various directions. Holland3 described a
radiation boundary condition for the field scattered from a
3-dimensional object based on an r-1 behavior. He observed that a
good empirical estimate of "sufficiently large r" was about d/2
beyond the scatterer in every direction, d being its largest
dimension. This fact motivates our effort to obtain radiation
boundary conditions accurate to order !]régnrcé|max/r!4. Mur®,
motivated by the work of Engquist and Majda, manipulated the
3-dimensional scalar wave equation for a radiated field component
into a form appropriate for waves at various angles of incidence
to a planar boundary. He obtained a second-order finite
difference equation which proved to be very efficient for

extrapolating tangential E just beyond the boundary.

We intend to avoid plane wave assumptions and derive boundary
conditions more directly related to the source distribution within
the region. We use the Panofsky-Phillips' relations,® which
enable one to extrapolate conveniently the vector field components
parallel (||) and perpendicular (!) to a radial from the coordinate
origin chosen near the center of the charge-current distribution.

Ana]xsis

The Panofsky-Phillips equations describe the space-time
fields

4nv/€ Tu, E(r,t) = e(r,t) = EI(F,t) + EZ(F,t) (1)

*This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.



4t H(r,t) = h(r,t) (2)

according to volume integrals over retarded sources (in brackets):
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(F,t) = | iiﬁgig dv' + 1| Lg%:ﬁ dv’ (5)

. Here the retarded time t' from a retarded source [p], [J], or
[J] at r' contributing field to the observative space-time point
(r,t) is

J]x

&,(Fut) = [ ! Ryt + 2 | dv' (4)

t' = t-R/c , R=|R| = |F-F'| . (6)

The dot denotes d/dt' at the source or 4/dt at the observation
time,

We have applied these equations to extrapolate the fields at
point (r+dr, t+dt) just beyond the numerical boundary in Fig. 1
from those fields at (r,t) on the houndary. ¥ is a vector from an
origin chosen to minimize_|Fr.. /r[¢. dr = g dr is chosen parallel
to r; components such as E| are perpendicular to F. The
ej-portion of @, consisting of "near-field" in (3), is primarily
longitudinal (i.e., parallel to r) but has a small transverse
component (Jr) to be retained. The e,- and h- fields, each of
which contains a near-field component « [J] and a "radiation”
field component « [J], are primarily transverse but have small
Tongitudinal components to be retained.

extrapolation point (r+dr, t+dt)
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Fig. 1. Geometry for deriving the fields extrapolated to point
(r+dr, t+dt) from those at (r,t) from the Panofsky-Phillips
relations,
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A very convenient property for analysis with r fixed is that
an arbitrary scalar source [p(r',t' = t-R/c)] or vector
[J(r',t')] is unchanged within second order of (r'/r) if (r,t) is
changed to (r+dr, t+dt), provided dt = dr/c. This implies

t -t - BT o tegt - R (P, FedF)/C , dt = drie ()

and follows easily from an expansion of R(r',r):

1/2 ) y 2
R(r',r) = [r2+(r')2—2rr'cos¢'] = r[1 - ;— cosw'-+6ﬂ;}ﬁ 1 (8)

Thus
0 2
R (r', r+dr) = r+dr - r'cosy’ +C7Q£—) (9)
and (7) is verified to second-order. Therefore, we may compute

changes in the fields (3)-(5) from (r,t) to (r+dr, t+dt) without
changing [p], [J], or [J] in the integrands!

The results of computing the changes in the fields within
second order of (r'/r) are summarized as follows:

@), (F+dr, tdt) - (&) (F8) - d(@) = 2 f£ (B(F.t),  (10)

4y, = -3 (&R, . (11)
d(Ezh_- d(ﬁu_x SH (12)
dRy, = -2 & (R(F.t))y (13)

These depend on the approximations
dR = dr = Rdr/r = Rydr/r _ (14)
which are made when second-order accuracy can be retained, and
wR(r',r)/c>1 ‘ (15)

at all significant frequencies in the sources. This implies the
numerical errors will be larger at the lower frequencies.

Equations (10)-(13) suggest_a_procedure for advancing the
field components from (r,t) to (r+dr, t+dt):



A)  Advance g (r,t) by d(&); according to (10).

B) Compare tLe fields at (r -dr, t-dt) with those at (F, t)
to obtain the total d(e) = d(e1lL + d(eZlL and d(ﬁlL
Use (12) to find d(e,) and then d(ey)

C) Then use (11) to flng'&e (r,t)), d then (8 (F,t))L.

D) With the (elL field thus separa ed at (r,t), proceed to
advance (&81)] and (&p)| to r+dr, t+dt.

E) If des1red advance %ﬁ)Il by (13)

Implementation

We intend to implement this procedure in the finite-
difference time-domain code GFDTD for sources within the numerical
rectangular parallelopiped in Fig. 1. Since the extrapolation
equations are referred to an r vector which is generally oblique
to the boundary, we must project the field changes--in particular,
those of e--to a grid of rectangular cells on the boundary. Once
the e-fields are projected onto the outer edges of finite
difference cells at time t+dt, they can be used along with the
other e-field components on edges crossing the boundary and on
inside edges to advance h on the boundary faces from time t-dt/2
to t+dt/2 ("leapfrogging" of e and h in time). If the procedure
is efficient, we will compute essentially only the correct outward
propagating field from prescribed sources.

References
1. E. L. Lindman, " 'Free-Space' Boundary Conditions for the
Time Dependent Wave Equation,” Jour. Comp. Phys., 18, 66-78
(1975).

2. B. Engquist and A. Majda, "Absorbing Boundary Conditions- for
the Numerical Simulation of Waves," Math, of Comp., 31,
629-651 (1977).

3. R. Holland, "Threde: A Free-Field EMP Coupling and
Scattering Code," IEEE Trans. Nuc. Sci., NS-24, 2416-2421
(1977).

4, G. Mur, "Absorbing Boundary Conditions for the Finite-
Difference Approximation of the Time-Domain Electromagnetic-
Field Equations," IEEE Trans. Electromag. Compat., EMC-23,
377-382 (1981).

5. W. K. H. Panofsky and M. Phillips, Classical Electricity and
Magnetism, 2nd Ed., Addison-Wesley, 1967, pp. 246,248,



